TopBottom

Followers



Click on more
SUBSCRIBE

Enter your email address:

Delivered by FeedBurner



VIDEO

Announcement: wanna exchange links? contact me at ravikrak@yahoo.com
Showing posts with label surds and indices. Show all posts
Showing posts with label surds and indices. Show all posts

SURDS AND INDICES

Posted by Ravi Kumar at Monday, November 24, 2008
Share this post:
Ma.gnolia DiggIt! Del.icio.us Yahoo Furl Technorati Reddit

surds and indices problems

surds and indices problems

Simple problems:


1. Laws of Indices:

(i) am * an = a(m+n)
(ii) am / an = a(m-n)
(iii) (am)n = a(m*n)
(iv) (ab)n = an * bn
(v) (a/b)n = an / bn
(vi) a0 = 1


2.Surds :Let 'a' be a rational number & 'n' be a positive
integer such that a1/n = nth root a is irrational.Then nth
root a is called 'a' surd of 'n'.

Problems:-
(1)
(i) (27)2/3 = (33)2/3 = 32 = 9.
(ii) (1024)-4/5 = (45)-4/5 = (4)-4= 1/(4)4 = 1/256.
(iii)(8/125)-4/3 =((2/5)3)-4/3 = (2/5)-4 = (5/2)4 = 625/16

(2) If 2(x-1)+ 2(x+1) = 1280 then find the value of x .


Solution: 2x/2+2x.2 = 1280
2x(1+22) = 2*1280
2x = 2560/5
2x = 512 => 2x = 29
x = 9


(3) Find the value of [5[81/3+271/3]3]1/4

Solution: [5[(23)1/3+(33)1/3]3]1/4
[5[2+3]3]1/4
[54]1/4 => 5.


(4) If (1/5)3y= 0.008 then find the value of (0.25)y

Solution: (1/5)3y = 0.008
(1/5)3y =[0.2]3
(1/5)3y =(1/5)3
3y= 3 => y=1.
(0.25)y = (0.25)1 => 0.25 = 25/100 = 1/4


(5) Find the value of (243)n/5 * 32n+1 / 9n * 3 n-1

Solution: (35)n/5 * 32n +1 / (32)n * 3n-1
33n+1 / 33n-1 3
33n+1 * 3-3n+1 => 32 =>9.


(6) Find the value of (21/4-1)( 23/4 +21/2+21/4+1)

Solution: Let us say 21/4 = x
(x-1)(x3+x2+x+1)
(x-1)(x2(x+1)+(x+1))
(x-1) (x2+1) (x+1) [(x-1)(x+1) = (x2-1)]
(x2+1) (x2-1) => (x4-1)
((21/4))4 - 1) = > (2-1) = > 1.


(7) If x= ya , y = zb , z = xc then find the value
of abc.

Solution: z= xc
z= (ya)c [ x= ya ]
z= (y)ac
z= (zb)ac [y= zb]
z= zabc
abc = 1


(8)Simplify (xa/xb)a2+ab+b2*(xb/xc)b2+bc+c2*(xc/xa)c2+ca+a2

Solution:[xa-b]a2+ab+b2 * [xb-c]b2+bc+c2 * [xc-a]c2+ca+a2

[ (a-b)(a2+ab+b2) = a3-b3]

from the above formula
=> xa3-b3 xb3-c3 xc3-a3
=> xa3-b3+b3-c3+c3-a3
=> x0 = 1


(9) (1000)7 /1018 = ?

(a) 10 (b) 100 (c ) 1000 (d) 10000

Solution: (1000)7 / 1018
(103)7 / (10)18 = > (10)21 / (10)18

=> (10)21-18 => (10)3 => 1000
Ans :( c )


(10) The value of (8-25-8-26) is

(a) 7* 8-25 (b) 7*8-26 (c ) 8* 8-26 (d) None

Solution: ( 8-25 - 8-26 )
=> 8-26 (8-1 )
=> 7* 8-26
Ans: (b)


(11) 1 / (1+ an-m ) +1/ (1+am-n) = ?
(a) 0 (b) 1/2 (c ) 1 (d) an+m

Solution: 1/ (1+ an/am) + 1/ ( 1+ am/an)
=> am / (am+ an ) + an /(am +an )
=> (am +an ) /(am + an)
=> 1
Ans: ( c)


(12) 1/(1+xb-a+xc-a)+1/(1+xa-b+xc-b)+1/(1+xb-c+xa-c)=?

(a) 0 (b) 1 ( c ) xa-b-c (d) None of the above

Solution: 1/ (1+xb/xa+xc/xa) + 1/(1+xa/xb +xc/xb) +
1/(1+xb/xc +xa/xc)
=> xa /(xa +xb+xc) + xb/(xa +xb+xc) +xc/(xa +xb+xc)
=>(xa +xb+xc) /(xa +xb+xc)
=>1
Ans: (b)


(13) If x=3+2 √2 then the value of (√x – 1/ √x)
is [ √=root]

(a) 1 (b) 2 (c ) 2√2 ( d) 3√3


Solution: (√x-1/√x)2 = x+ 1/x-2
=> 3+2√2 + (1/3+2√2 )-2
=> 3+2√2 + 3-2√2 -2
=> 6-2 = 4
(√x-1/√x)2 = 4
=>(√x-1/√x)2 = 22
(√x-1/√x) = 2.
Ans : (b)


(14) (xb/xc)b+c-a (xc/xa)c+a-b (xa/xb)b+a-c = ?

(a) xabc (b) 1 ( c) xab+bc+ca (d) xa+b+c


Solution: [xb-c]b+c-a [xc-a]c+a-b [xa-b]a+b-c

=>x(b-c)(b+c-a) x(c-a)(c+a-b) x(a-b)(a+b-c)
=>x(b2-c2-ab-ac) x(c2-a2-bc-ab) x(a2-b2-ac-bc)
=>x(b2-c2-ab-ac+c2-a2-bc-ab+a2-b2-ac-bc)
=> x0
=>1
Ans: (b)

(15) If 3x-y = 27 and 3x+y = 243 then x is equal to

(a) 0 (b) 2 (c ) 4 (d) 6

Solution: 3x-y = 27 => 3x-y = 33
x-y= 3
3x+y = 243 => 3x+y = 35
x+y = 5
From above two equations x = 4 , y=1
Ans: (c )


(16) If ax = by = cz and b2 = ac then ‘y’equals

(a)xz/x+z (b)xz/2(x-z) (c)xz/2(z-x) (d)2xz/x+z

Solution: Let us say ax = by = cz = k
ax =k => [ax]1/x = k1/x
=> a = k1/x
Simillarly b = k1/y
c = k1/z
b2 = ac
[k1/y]2=k1/xk1/z
=>k2/y = k1/x+1/z
=> 2/y = 1/x+1/y
=>y= 2xz/x+z
Ans: (d)


(17) ax = b,by = c ,cz = a then the value of
xyz is is

(a) 0 (b) 1 (c ) 1/abc (d) abc

Solution: ax = b
(cz)x = b [cz = a]
by)xz = b [by = c]
=>xyz =1
Ans: (b)


(18) If 2x = 4y =8z and (1/2x +1/4y +1/6z) =24/7 then
the value of 'z' is

(a) 7/16 (b) 7 / 32 (c ) 7/48 (d) 7/64

Solution: 2x = 4y=8z
2x = 22y = 23z
x= 2y = 3z
Multiply above equation with ‘ 2’
2x = 4y= 6z
(1/2x+1/4y+1/6z) = 24/7
=>(1/6z+1/6z+1/6z) = 24/7
=> 3 / 6z = 24/7
=> z= 7/48
Ans: ( c)

Share |